Каталог заданий.
Преобразование показательных выражений
Версия для печати и копирования в MS Word
1
Задание № 212
i

За­пи­ши­те (11x)y в виде сте­пе­ни с ос­но­ва­ни­ем 11.



2
Задание № 1128
i

Ука­жи­те номер вы­ра­же­ния, яв­ля­ю­ще­го­ся од­но­чле­ном вось­мой сте­пе­ни:

а) 2x в сте­пе­ни 8 yz в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка       б)  ко­рень из: на­ча­ло ар­гу­мен­та: 3a в квад­ра­те конец ар­гу­мен­та x в сте­пе­ни 6 y      в)  дробь: чис­ли­тель: xyz в сте­пе­ни 5 , зна­ме­на­тель: 2c в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка конец дроби       г)  дробь: чис­ли­тель: 2xy левая круг­лая скоб­ка xy пра­вая круг­лая скоб­ка в кубе , зна­ме­на­тель: 3 конец дроби       д) 2x в сте­пе­ни 8 y


3
Задание № 36
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния 2 в сте­пе­ни левая круг­лая скоб­ка 3x плюс 4 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка имеет вид:



4
Задание № 39
i

Зна­че­ние вы­ра­же­ния 3 в сте­пе­ни левая круг­лая скоб­ка минус 12 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 3 в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка равно:



5

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 125 в сте­пе­ни x плюс 25 в сте­пе­ни x минус 12 умно­жить на 5 в сте­пе­ни x , зна­ме­на­тель: 5 в сте­пе­ни x левая круг­лая скоб­ка 5 в сте­пе­ни x минус 3 пра­вая круг­лая скоб­ка конец дроби .



6

Ука­жи­те номер вы­ра­же­ния, тож­де­ствен­но рав­но­го вы­ра­же­нию a–2.


Завершить работу, свериться с ответами, увидеть решения.